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Vector Analysis

SCALARS AND VECTORS

• The term scalar refers to a quantity whose value may be represented
by a single (positive or negative) real number. Like distance,
temperature, mass, density, pressure, and volume.

• A vector has both a magnitude and a direction in space. Like Force,
velocity, and acceleration.

• Our work will mainly concern scalar and vector fields.

• A field (scalar or vector) may be defined mathematically as some 
function that connects an arbitrary origin to a general point in space.

• The value of a field varies in general with both position and time.
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Vector Analysis

VECTOR ALGEBRA

• A vector is determined by its length and direction. 
They are usually denoted with letters with arrows on 
the top 𝐴 or in bold letter A. 

• If we are given two points in the space (p1, p2, p3) 
and (q1, q2, q3) then we can compute the vector 
that goes from p to q as follows:

𝐴

𝑝1, 𝑝2, 𝑝3

𝑞1, 𝑞2, 𝑞3

𝑝𝑞
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COORDINATE  SYSTEMS

• RECTANGULAR or Cartesian

• CYLINDRICAL

• SPHERICAL

Choice is based on 

symmetry of problem

Examples:

Sheets - RECTANGULAR

Wires/Cables - CYLINDRICAL

Spheres - SPHERICAL

Vector Analysis
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Cartesian Coordinates

P (x, y, z)

x
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z

P(x,y,z)

Rectangular CoordinatesOr
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x

A vector A in Cartesian coordinates can be written as

),,( zyx AAA or zzyyxx aAaAaA 

where ax,ay and az are unit vectors along x, y and z-directions.
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Cylindrical Coordinates

P (r, Φ, z)

x= r cos Φ, y=r sin Φ,    z=z

z

Φ

z

r
x

y

P(r, Φ, z)
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A vector A in Cylindrical coordinates can be written as

),,( zr AAA  or
zzrr aAaAaA  

where ar,aΦ and az are unit vectors along r, Φ and z-directions.

zz
x

y
yxr   ,tan, 122 
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The relationships between (ax,ay, az) and (ar,aΦ, az)are 

zz

ry

rx

aa

aaa

aaa
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sincos
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 cossin

sincos

or

zzyxryx aAaAAaAAA   )cossin()sincos(

Then the relationships between (Ax,Ay, Az) and (Ar, AΦ, Az)are 
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In matrix form we can write
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Spherical Coordinates

P (r, θ, Φ)

x=r sin θ cos Φ, y=r sin θ sin Φ,    Z=r cos θ 
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A vector A in Spherical coordinates can be written as

),,(  AAAr or  aAaAaA rr 

where ar, aθ, and aΦ are unit vectors along r, θ, and Φ-directions.
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The relationships between (ax,ay, az) and (ar,aθ,aΦ)are 
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Then the relationships between (Ax,Ay, Az) and (Ar, Aθ,and AΦ)are 
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In matrix form we can write
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Vector Analysis

VECTOR ALGEBRA
• The three principal directions (unit vectors, vectors of length 

one) in the space are

𝑖 = 1,0,0 , 𝑗 = 0,1,0 , 𝑘 = 0,0,1

• The length (magnitude) of a vector with coordinates [𝐴𝑥, 𝐴𝑦, 𝐴𝑧] 
is

𝐴 = 𝐴𝑥
2 + 𝐴𝑦

2 + 𝐴𝑧
2,

With unit vector 𝑎𝐴 =
𝐴

𝐴
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Vector Analysis

VECTOR ALGEBRA

• If we have two vectors 𝐴 and  𝐵

𝐴 + 𝐵 = 𝐴𝑥 + 𝐵𝑥  𝑥 + 𝐴𝑦 + 𝐵𝑦  𝑦 + 𝐴𝑧 + 𝐵𝑧  𝑧

𝐴 + 𝐵 = 𝐴𝑥 + 𝐵𝑥  𝑖 + 𝐴𝑦 + 𝐵𝑦  𝑗 + 𝐴𝑧 + 𝐵𝑧
 𝑘

or

𝐴 − 𝐵 = 𝐴𝑥 − 𝐵𝑥  𝑥 + 𝐴𝑦 − 𝐵𝑦  𝑦 + 𝐴𝑧 − 𝐵𝑧  𝑧

𝛽(𝐴) = 𝛽𝐴𝑥  𝑥 + 𝛽𝐴𝑦  𝑦 + 𝛽𝐴𝑧  𝑧
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Vector Analysis

• Dot product, or scalar product
𝐴 ∙ 𝐵 = 𝐴 𝐵 cos 𝜃𝐴𝐵

𝐴 ∙ 𝐵 = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧

• Vector product (cross-product)

It is denoted by 𝑉 = 𝐴𝑥𝐵 where
𝐴𝑥𝐵 = 𝐴 𝐵 sin 𝜃𝐴𝐵  𝑣

𝐴𝑥𝐵 =

 𝑥  𝑦  𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧

𝐵𝑥 𝐵𝑦 𝐵𝑧

𝐵

𝐴
𝜃𝐴𝐵

𝐵

𝐴

𝜃𝐴𝐵

 𝑣
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Gradient, Divergence and Curl

• Gradient of a scalar function is a 
vector quantity. 

• Divergence of a vector is a scalar 
quantity.

• Curl of a vector is a vector quantity.

f Vector 

A.

The Del Operator
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Vector 
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The gradient of a scalar field V is a vector that represents both the 

magnitude and the direction of the maximum space rate of increase of V.

Gradient of a Scalar
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Gradient, Divergence and Curl

9/26/2017 Lecture 02 17



PHYSICAL INTERPRETATION OF GRADIENT

• One is given in terms of the graph of some function z
= f(x, y), where the graph is a surface whose points
have variable heights over the x y – plane.

• An illustration is given below.

If, say, we place a marble at some point

(x, y) on this graph with zero initial force, its motion
will trace out a path on the surface, and in fact it will
choose the direction of steepest descent.

• This direction of steepest descent is given by the
negative of the gradient of f. One takes the negative
direction because the height is decreasing rather
than increasing.

Gradient, Divergence and Curl
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Gradient, Divergence and Curl
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Gradient, Divergence and Curl

Find gradient of this scalar field:

yxeV z cosh2sin

z
z

y
z

x
z

zyx

yxe

yxeyxe

z

V

y

V

x

V
V

a          

aa       
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cosh2sin

sinh2sincosh2cos2
























Answer
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The divergence of A at a given point P is the outward flux per 

unit volume as the volume shrinks about P.

Divergence of a Vector

v

dSA

AdivA S

v 





.

lim.
0

Gradient, Divergence and Curl

For Cartesian coordinate:
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Gradient, Divergence and Curl
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Gradient, Divergence and Curl
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Gradient, Divergence and Curl
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Gradient, Divergence and Curl
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Gradient, Divergence and Curl
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Find divergence of these vectors:

zx xzyzxP aa  2

     

xxyz
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Answer
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The curl of A is an axial vector whose magnitude is the maximum circulation

of A per unit area tends to zero and whose direction is the normal direction of

the area when the area is oriented to make the circulation maximum.

Curl of a Vector

n
L

s
a

S

dlA

AcurlA

max

0

.

lim























ΔS is the area bounded by the curve L and an is the unit 

vector normal to the surface ΔS 

Gradient, Divergence and Curl

Where, dldl
dacdbcabs















  AA
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For Cartesian coordinate:

CURL OF A VECTOR (Cont’d)  
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Gradient, Divergence and Curl
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Gradient, Divergence and Curl

CURL OF A VECTOR (Cont’d)  
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The divergence theorem states that the total outward flux of a 

vector field A through the closed surface S is the same as the 

volume integral of the divergence of A. 

Divergence or Gauss’ Theorem

 
V

AdvdSA ..

Gradient, Divergence and Curl
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L S

dSAdlA ).(.

Stokes’ Theorem

Stokes’s theorem states that the circulation of a vector field A around a

closed path L is equal to the surface integral of the curl of A over the open

surface S bounded by L, provided A and are continuous on SA

Gradient, Divergence and Curl
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