Electromagnetic waves

Prepared by
Dr. Eng. Sherif Hekal

Vector Analysis

SCALARS AND VECTORS

- The term scalar refers to a quantity whose value may be represented by a single (positive or negative) real number. Like distance, temperature, mass, density, pressure, and volume.
- A vector has both a magnitude and a direction in space. Like Force, velocity, and acceleration.
- Our work will mainly concern scalar and vector fields.
- A field (scalar or vector) may be defined mathematically as some function that connects an arbitrary origin to a general point in space.
- The value of a field varies in general with both position and time.

Vector Analysis

VECTOR ALGEBRA

- A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top \bar{A} or in bold letter \mathbf{A}.
- If we are given two points in the space (p1, p2, p3) and ($q 1, q 2, q 3$) then we can compute the vector that goes from p to q as follows:

Vector Analysis

COORDINATE SYSTEMS

- RECTANGULAR or Cartesian
- CYLINDRICAL
- SPHERICAL

Examples:
Sheets - RECTANGULAR
Wires/Cables - CYLINDRICAL
Spheres-SPHERICAL

Cartesian Coordinates Or Rectangular Coordinates

$$
\begin{aligned}
& \mathbf{P}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \\
& -\infty<x<\infty \\
& -\infty<y<\infty \\
& -\infty<z<\infty
\end{aligned}
$$

A vector A in Cartesian coordinates can be written as

$$
\left(A_{x}, A_{y}, A_{z}\right) \text { or } \quad A_{x} a_{x}+A_{y} a_{y}+A_{z} a_{z}
$$

where $\mathrm{a}_{\mathrm{x}}, \mathrm{a}_{\mathrm{y}}$ and a_{z} are unit vectors along x, y and z -directions.

Cylindrical Coordinates

$$
\begin{array}{ll}
P(r, \Phi, z) & 0 \leq r<\infty \\
& 0 \leq \phi<2 \pi \\
& -\infty<z<\infty
\end{array}
$$

A vector A in Cylindrical coordinates can be written as

$$
\left(A_{r}, A_{\phi}, A_{z}\right) \text { or } \quad A_{r} a_{r}+A_{\phi} a_{\phi}+A_{z} a_{z}
$$

where $\mathrm{a}_{\mathrm{r}}, \mathrm{a}_{\Phi}$ and a_{z} are unit vectors along r, Φ and z -directions.

$$
\begin{aligned}
& \mathrm{x}=\mathrm{r} \cos \Phi, \mathrm{y}=\mathrm{r} \sin \Phi, \quad \mathrm{z}=\mathrm{z} \\
& r=\sqrt{x^{2}+y^{2}}, \phi=\tan ^{-1} \frac{y}{x}, z=z
\end{aligned}
$$

The relationships between $\left(a_{x}, a_{y}, a_{z}\right)$ and $\left(a_{r}, a_{\Phi}, a_{z}\right)$ are

$$
\begin{aligned}
& a_{x}=\cos \phi a_{r}-\sin \phi a_{\phi} \\
& a_{y}=\sin \phi a_{r}-\cos \phi a_{\phi} \\
& a_{z}=a_{z}
\end{aligned}
$$

or

$$
\begin{aligned}
& a_{r}=\cos \phi a_{x}+\sin \phi a_{y} \\
& a_{\phi}=-\sin \phi a_{x}+\cos \phi a_{y} \\
& a_{z}=a_{z}
\end{aligned}
$$

Then the relationships between $\left(\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}, \mathrm{A}_{z}\right)$ and $\left(\mathrm{A}_{\mathrm{r}}, \mathrm{A}_{\Phi}, \mathrm{A}_{z}\right)$ are $A=\left(A_{x} \cos \phi+A_{y} \sin \phi\right) a_{r}+\left(-A_{x} \sin \phi+A_{y} \cos \phi\right) a_{\phi}+A_{z} a_{z}$

$$
\begin{aligned}
& A_{r}=A_{x} \cos \phi+A_{y} \sin \phi \\
& A_{\phi}=-A_{x} \sin \phi+A_{y} \cos \phi \\
& A_{z}=A_{z}
\end{aligned}
$$

In matrix form we can write

$$
\left[\begin{array}{c}
A_{r} \\
A_{\phi} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]
$$

Spherical Coordinates

$$
\begin{array}{ll}
P(r, \theta, \Phi) & 0 \leq r<\infty \\
& 0 \leq \theta \leq \pi \\
& 0 \leq \phi<2 \pi
\end{array}
$$

A vector A in Spherical coordinates can be written as

$$
\left(A_{r}, A_{\theta}, A_{\phi}\right) \text { or } A_{r} a_{r}+A_{\theta} a_{\theta}+A_{\phi} a_{\phi}
$$

where $\mathrm{a}_{\mathrm{r}}, \mathrm{a}_{\theta}$, and a_{Φ} are unit vectors along r, θ, and Φ-directions.

$$
\begin{gathered}
\mathrm{x}=\mathrm{r} \sin \theta \cos \Phi, \mathrm{y}=\mathrm{r} \sin \theta \sin \Phi, \quad \mathrm{Z}=\mathrm{r} \cos \theta \\
r=\sqrt{x^{2}+y^{2}+z^{2}}, \theta=\tan ^{-1} \frac{\sqrt{x^{2}+y^{2}}}{z}, \phi=\tan ^{-1} \frac{y}{x}
\end{gathered}
$$

The relationships between $\left(\mathrm{a}_{\mathrm{x}}, \mathrm{a}_{\mathrm{y}}, \mathrm{a}_{\mathrm{z}}\right)$ and $\left(\mathrm{a}_{\mathrm{r}}, \mathrm{a}_{\theta}, \mathrm{a}_{\phi}\right)$ are

$$
\begin{aligned}
& a_{x}=\sin \theta \cos \phi a_{r}+\cos \theta \cos \phi a_{\theta}-\sin \phi a_{\phi} \\
& a_{y}=\sin \theta \sin \phi a_{r}+\cos \theta \sin \phi a_{\theta}+\cos \phi a_{\phi} \\
& a_{z}=\cos \theta a_{r}-\sin \theta a_{\theta}
\end{aligned}
$$

or

$$
\begin{aligned}
& a_{r}=\sin \theta \cos \phi a_{x}+\sin \theta \sin \phi a_{y}+\cos \theta a_{z} \\
& a_{\theta}=\cos \theta \cos \phi a_{x}+\cos \theta \sin \phi a_{y}-\sin \theta a_{z} \\
& a_{\phi}=-\sin \phi a_{x}+\cos \phi a_{y}
\end{aligned}
$$

Then the relationships between $\left(\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}, \mathrm{A}_{\mathrm{z}}\right)$ and $\left(\mathrm{A}_{\mathrm{r}}, \mathrm{A}_{\theta}\right.$, and $\left.\mathrm{A}_{\Phi}\right)$ are

$$
\begin{aligned}
& A=\left(A_{x} \sin \theta \cos \phi+A_{y} \sin \theta \sin \phi+A_{z} \cos \theta\right) a_{r} \\
& +\left(A_{x} \cos \theta \cos \phi+A_{y} \cos \theta \sin \phi-A_{z} \sin \theta\right) a_{\theta} \\
& +\left(-A_{x} \sin \phi+A_{y} \cos \phi\right) a_{\phi}
\end{aligned}
$$

$$
\begin{aligned}
& A_{r}=A_{x} \sin \theta \cos \phi+A_{y} \sin \theta \sin \phi+A_{z} \cos \theta \\
& A_{\theta}=A_{x} \cos \theta \cos \phi+A_{y} \cos \theta \sin \phi-A_{z} \sin \theta \\
& A_{\phi}=-A_{x} \sin \phi+A_{y} \cos \phi
\end{aligned}
$$

In matrix form we can write

$$
\left[\begin{array}{c}
A_{r} \\
A_{\theta} \\
A_{\phi}
\end{array}\right]=\left[\begin{array}{ccc}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & 0
\end{array}\right]\left[\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]
$$

Vector Analysis

VECTOR ALGEBRA

- The three principal directions (unit vectors, vectors of length one) in the space are

$$
\bar{i}=[1,0,0], \bar{j}=[0,1,0], \bar{k}=[0,0,1]
$$

- The length (magnitude) of a vector with coordinates $\left[A_{x}, A_{y}, A_{z}\right]$ is

$$
\begin{aligned}
& |\bar{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}, \\
& \text { With unit vector } \overline{a_{A}}=\frac{\bar{A}}{|\bar{A}|}
\end{aligned}
$$

Vector Analysis

VECTOR ALGEBRA

- If we have two vectors \bar{A} and \bar{B}

$$
\begin{gathered}
\bar{A}+\bar{B}=\left(A_{x}+B_{x}\right) \hat{x}+\left(A_{y}+B_{y}\right) \hat{y}+\left(A_{z}+B_{z}\right) \hat{z} \\
\text { or } \\
\bar{A}+\bar{B}=\left(A_{x}+B_{x}\right) \hat{\imath}+\left(A_{y}+B_{y}\right) \hat{\jmath}+\left(A_{z}+B_{z}\right) \hat{k} \\
\bar{A}-\bar{B}=\left(A_{x}-B_{x}\right) \hat{x}+\left(A_{y}-B_{y}\right) \hat{y}+\left(A_{z}-B_{z}\right) \hat{z} \\
\beta(\bar{A})=\beta A_{x} \hat{x}+\beta A_{y} \hat{y}+\beta A_{z} \hat{z}
\end{gathered}
$$

Vector Analysis

- Dot product, or scalar product

$$
\begin{gathered}
\overline{\bar{A}} \cdot \overline{\bar{B}}=|\bar{A}||\bar{B}| \cos \theta_{A B} \\
\bar{A} \cdot \bar{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{gathered}
$$

- Vector product (cross-product)

It is denoted by $\bar{V}=\bar{A} x \bar{B}$ where

$$
\begin{aligned}
\bar{A} x \bar{B} & =|\bar{A}||\bar{B}| \sin \theta_{A B} \hat{v} \\
\bar{A} x \bar{B} & =\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
\end{aligned}
$$

Gradient, Divergence and Curl

The Del Operator

$$
\nabla=\frac{\partial}{\partial x} a_{x}+\frac{\partial}{\partial y} a_{y}+\frac{\partial}{\partial z} a_{z}
$$

- Gradient of a scalar function is a vector quantity.
$\nabla f \quad \longrightarrow$ Vector
- Divergence of a vector is a scalar quantity.
- Curl of a vector is a vector quantity. $\quad \nabla \times A \longrightarrow$ Vector

Gradient, Divergence and Curl

Gradient of a scalar

The gradient of a scalar field V is a vector that represents both the magnitude and the direction of the maximum space rate of increase of V.

$$
\nabla V=\frac{\partial V}{\partial x} a_{x}+\frac{\partial V}{\partial y} a_{y}+\frac{\partial V}{\partial z} a_{z}
$$

Gradient, Divergence and Curl

PHYSICAL INTERPRETATION OF GRADIENT

- One is given in terms of the graph of some function z $=f(x, y)$, where the graph is a surface whose points have variable heights over the $x y$ - plane.
- An illustration is given below.

If, say, we place a marble at some point
(x, y) on this graph with zero initial force, its motion will trace out a path on the surface, and in fact it will choose the direction of steepest descent.

- This direction of steepest descent is given by the negative of the gradient of f. One takes the negative direction because the height is decreasing rather than increasing.

Gradient, Divergence and Curl

Gradient of a scalar field important
< relations

* $\nabla(V+U)=\nabla V+\nabla U$
* $\nabla(V U)=V \nabla U+U \nabla V$

Gradient, Divergence and Curl

Find gradient of this scalar field:

$$
V=e^{-z} \sin 2 x \cosh y
$$

Answer

$$
\begin{aligned}
\nabla V= & \frac{\partial V}{\partial x} \mathbf{a}_{x}+\frac{\partial V}{\partial y} \mathbf{a}_{y}+\frac{\partial V}{\partial z} \mathbf{a}_{z} \\
= & 2 e^{-z} \cos 2 x \cosh y \mathbf{a}_{x}+e^{-z} \sin 2 x \sinh y \mathbf{a}_{y} \\
& -e^{-z} \sin 2 x \cosh y \mathbf{a}_{z}
\end{aligned}
$$

Gradient, Divergence and Curl

Dívergence of a vector

The divergence of A at a given point P is the outward flux per unit volume as the volume shrinks about P.

$$
\operatorname{div} A=\nabla \cdot A=\lim _{\Delta v \rightarrow 0} \frac{\oint_{S} A \cdot d S}{\Delta v}
$$

For Cartesian coordinate:

$$
\nabla \bullet \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}
$$

Gradient, Divergence and Curl

Divergence of a vector in Cartesian coordinates

Gradient, Divergence and Curl

Divergence of a vector in Cartesian coordinates

\& To evaluate the divergence of a vector field \vec{A} at point $P\left(x_{0}, y_{0}, z_{0}\right)$ first construct a differential volume around point P
\therefore The closed surface integral of \vec{A} is obtained as

```
\oint
```

\& A three dimensional Taylors series expansion of A_{x} about P is

$$
\begin{aligned}
A_{x}(x, y, z)=A_{x}\left(x_{0}, y_{0}, z_{0}\right)+\left.\left(x-x_{0}\right) \frac{\partial A_{x}}{\partial x}\right|_{P}+(y & \left.-y_{0}\right)\left.\frac{\partial A_{x}}{\partial y}\right|_{P}+\left.\left(z-z_{0}\right) \frac{\partial A_{x}}{\partial z}\right|_{P} \\
& + \text { higher order terms }
\end{aligned}
$$

Gradient, Divergence and Curl

Divergence of a vector in Cartesian coordinates

For the front side $x=x_{0}+\frac{d x}{2}, \vec{A}=A_{x} \hat{a}_{x}, \overrightarrow{d S}=d y d z \hat{a}_{x}$ $\int_{\text {FRONT }} \vec{A} \cdot \overrightarrow{d S}=\left(A_{x}\left(x_{0}, y_{0}, z_{0}\right)+\left.\frac{d x}{2} \frac{\partial A_{x}}{\partial x}\right|_{p}\right)$ dydz + higher order terms

For the back side $x=x_{0}-\frac{d x}{2}, \vec{A}=A_{x}\left(-\hat{a}_{x}\right), \overrightarrow{d S}=d y d z\left(-\hat{a}_{x}\right)$
$\int_{B A C K} \vec{A} \cdot \overrightarrow{d S}=-\left(A_{x}\left(x_{0}, y_{0}, z_{0}\right)-\left.\frac{d x}{2} \frac{\partial A_{x}}{\partial x}\right|_{P}\right) d y d z+$ higher order terms
$\int_{F R O N T} \vec{A} \cdot \overrightarrow{d S}+\int_{B A C K} \vec{A} \cdot \overrightarrow{d S}=\left.d x d y d z \frac{\partial A_{x}}{\partial x}\right|_{P}+$ higher order terms

Gradient, Divergence and Curl

Divergence of a vector in Cartesian coordinates

Similarly

$$
\int_{L E F T} \vec{A} \cdot \overrightarrow{d S}+\int_{N G H T} \vec{A} \cdot \overrightarrow{d S}=\left.d x d y d z \frac{\partial A_{y}}{\partial y}\right|_{P}+\text { higher order terms }
$$

$$
\int_{\text {TOP }} \vec{A} \cdot \overrightarrow{d S}+\int_{\text {BOTTOM }} \vec{A} \cdot \overrightarrow{d S}=\left.d x d y d z \frac{\partial A_{z}}{\partial z}\right|_{P}+\text { higher order terms }
$$

$$
\oint_{S} \vec{A} \cdot \overrightarrow{d S}=\left.d x d y d z \frac{\partial A_{x}}{\partial x}\right|_{P}+\left.d x d y d z \frac{\partial A_{y}}{\partial y}\right|_{P}+\left.d x d y d z \frac{\partial A_{z}}{\partial z}\right|_{P}+\text { higher order terms }
$$

$$
\oint_{S} \vec{A} \cdot \overrightarrow{d S}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\left.\frac{\partial A_{z}}{\partial z}\right|_{P} \Delta v+\text { higher order terms }
$$

Substituting in $\lim _{\delta v \rightarrow 0} \frac{\oint_{s} \bar{A} \cdot \overline{d s}}{\Delta v}$

Gradient, Divergence and Curl

Divergence of a vector in Cartesian coordinates

$$
\lim _{\partial v \rightarrow 0} \frac{\oint_{s} \vec{A} \cdot \overrightarrow{d S}}{\Delta v}=\lim _{\partial \gamma \rightarrow 0} \frac{\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\left.\frac{\partial A_{z}}{\partial z}\right|_{p}}{\Delta v} \Delta v=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\left.\frac{\partial A_{z}}{\partial z}\right|_{p}
$$

Since higher order terms vanish as $\Delta v \rightarrow 0$
Divergence of \vec{A} at $P\left(x_{0}, y_{0}, z_{0}\right)$ in Cartesian coordinates is

$$
\vec{\nabla} \cdot \vec{A}=\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right)
$$

Find divergence of these vectors:

$$
P=x^{2} y z \mathbf{a}_{x}+x z \mathbf{a}_{z}
$$

Answer

$$
\begin{aligned}
\nabla \bullet \mathbf{P} & =\frac{\partial P_{x}}{\partial x}+\frac{\partial P_{y}}{\partial y}+\frac{\partial P_{z}}{\partial z} \\
& =\frac{\partial}{\partial x}\left(x^{2} y z\right)+\frac{\partial}{\partial y}(0)+\frac{\partial}{\partial z}(x z) \\
& =2 x y z+x
\end{aligned}
$$

Gradient, Divergence and Curl

curl of a vector

The curl of A is an axial vector whose magnitude is the maximum circulation of A per unit area tends to zero and whose direction is the normal direction of the area when the area is oriented to make the circulation maximum.

9/26/2017
$\operatorname{curl} A=\nabla \times A=\left(\lim _{\Delta s \rightarrow 0} \frac{\oint A . d l}{\Delta S}\right)_{\max } a_{n}$
Where, $\quad \oint_{s} \mathbf{A} \bullet d l=\left(\int_{a b}+\int_{b c}+\int_{c d}+\int_{d a}\right) \mathbf{A} \bullet d l$
ΔS is the area bounded by the curve L and a_{n} is the unit vector normal to the surface ΔS

Gradient, Divergence and Curl

CURL OF A VECTOR (cont'd)

For Cartesian coordinate:

$$
\begin{gathered}
\nabla \times \mathbf{A}=\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right| \\
\nabla \times \mathbf{A}=\left[\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right] \mathbf{a}_{x}-\left[\frac{\partial A_{z}}{\partial x}-\frac{\partial A_{x}}{\partial z}\right] \mathbf{a}_{y}+\left[\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right] \mathbf{a}_{z}
\end{gathered}
$$

Gradient, Divergence and Curl

CURL OF A VECTOR (cont'd)

Gradient, Divergence and Curl

Dívergence or Gauss' Theorem

The divergence theorem states that the total outward flux of a vector field A through the closed surface S is the same as the volume integral of the divergence of A.

$$
\oint A \cdot d S=\int_{V} \nabla \cdot A d v
$$

Gradient, Divergence and Curl

Stokes' Theorem

Stokes's theorem states that the circulation of a vector field A around a closed path L is equal to the surface integral of the curl of A over the open surface S bounded by L, provided A and $\nabla \times A$ are continuous on S

$$
\oint_{L} A \cdot d l=\int_{S}(\nabla \times A) \cdot d S
$$

